Skip to content

Lecture about Swin-Unet

Summary

  1. Attention-based networks
    1. Background
      1. Structured output problems
      2. Encoder-decoder framework
    2. Attention Mechanisms
    3. Image Captioning with Attention Mechanisms
  2. Transformers
    1. Background: Machine Translation
    2. Self-attention
    3. Scaled dot-product attention
    4. Multi-head Self Attention module
  3. Vision domain - DETR
    1. Background: Object detection & set prediction problem
    2. Detection Transformer (DETR)
  4. Vision Transformer - ViT
    1. Background: Transformers + CNN or RNN
    2. Vision Transformers - ViT
  5. Optimizing ViT
    1. Background: Data-hungry transformers
    2. Distillation
  6. Swin Transformer
    1. Background: Problems using Transformers with images
    2. Swin Transformer architecture
    3. Swin Transformer block
    4. Shifted Window based Self-attention
  7. Swin-Unet
    1. Background: How to improve Unets segmentation
    2. Swin-Unet architecture
    3. Patch merging and Patch expanding layers